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A simplified charge transfer model: calculations using an explicit kinetic
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Abstract

A charge transfer calculation which uses an explicit kinetic energy functional is reported. By combining the implicit Poisson equation
(Andrew E. DePristo, Phy. Rev. A, 54, 3863 (1996)) with the Thomas–Fermi kinetic energy functional, we developed a new scheme to
calculate charge transfer in a crystal system. The applicability of this scheme is investigated for S O crystals, where the variation of totaln 2

charge in a muffin-tin sphere is analyzed as a function of lattice constant and the results of these analyses are compared with the exact
result calculated by using the full potential augmented wave method. Our new scheme is found to predict correct direction of charge
transfer.  1998 Elsevier Science S.A. All rights reserved.
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1. Introduction can be calculated by solving an implicit Poisson equation
(IPE). Since this method dose not use the KS one-electron-

First-principle (FP) calculations provide an accurate orbital framework to describe the kinetic energy of elec-
means to calculate the electronic structures and binding trons but adopts the explicit kinetic energy functional, one
energies for many material systems. As a result, FP can expect a more efficient calculation than the Harris
calculations have been one of the most important tools in functional. The feasibility of this method was tested
materials design. However, since many FP calculations numerically only for the atom-in-jellium system. In this
depend on the Kohn–Sham (KS) one-electron-orbital study we investigate the applicability of the IPE approach
framework [1], and this requires a large calculation to in a real system by evaluating charge transfer in a crystal.
solve a highly non-linear complex optimization problem,
prediction of material properties is a very difficult prob-
lem. While efficient methods are under development to 2. Method
solve this complicated optimization problem by self-con-
sistent procedures, non-self-consistent approaches are also 2.1. Implicit Poisson equation
being investigated, especially as a simplified method to
estimate material properties. Based on the density functional theory, the total energy

Harris proposed one of these approaches [2], where, of a materials system can be described as a function of the
using summed atomic densities as a starting point in the electron density of r(r)
KS one-electron-orbital framework, one can calculate the

1 r(r)r(r9)total energy of materials efficiently. This method utilizes
] ]]]E(r(r)) 5 G(r(r)) 1 EE dr dr9summed atomic densities to provide the external potential, 2 ur 2 r9u

and then solves the one-electron Schrodinger equation for Z r(r) Z ZR R Rthe one-electron KS orbitals and energies in this potential. ]] ]]]1E dr 1O (1)
ur 2 Ru uR 2 R9uRR9Recently, Andrew developed a new formalism [3] where

the charge density distribution of the grand canonical sate G(r(r)) 5 E (r(r)) 1 E (r(r))KI XC

*Corresponding author. Here E (r(r)) and E (r(r)) represent the kinetic andKI XC
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exchange-correlation energy of electrons, respectively. The Zr(r) R
]] ]]variational principle, dE(r(r)) /dr(r)50, yields the Hohen- m(r(r)) 5V (r(r)) 1E dr9 2OKXC ur 2 r9u ur 2 RuRberg–Kohn equation, subject to the constraint of a constant

number of electrons,
r(r) 5O r (r 2 R) (9)R

R
Zr(r9) R

]] ]]V (r(r)) 1E dr9 2O 5 m (2)KXC This equation implies that the redistribution of the chargeur 2 r9u ur 2 RuR
density is determined from the second derivative of the

where the kinetic-exchange-correlation potential is defined chemical potential function, m(r(r)), and grand state can
2Tas be gotten on m(r(r))50. The amount of charge transfer,

QQ, in a close region can be calculated in terms of Gauss
dG(r(r))

theorem.]]]V (r(r)) 5 (3)KXC dr(r)
1
]QQ 5 E dS grad ? m(r(r)) (10)and the normalization condition on r(r) is enforced by 4p

suitable choice of chemical potential m. For an isolated
atom, Eq. (3) can be written as 2.2. Coulomb potential analysis method

Zr(r9) R In the evaluation of Eq. (9) and (10), the most compli-]] ]]V (r (r)) 1E dr9 2O 5 m (4)KXC R Rur 2 r9u ur 2 RuR cated problem is how to calculate non-local Coulomb
energy for the sum of numerical atomic charge density. Wewhere r (r) is an atomic charge density. The redistributionR overcame it by using a pseudo charge technique similar toof charge density caused by the condensation of atoms can
Laasonen et al. [5]. In order to construct pseudo chargebe defined as the deviation from atomic density.
density, we substitute the real charge density for a pseudo
charge distribution constructed using polynomials of rDr(r) 5 r(r) 2O r (r) (5)R

R inside a muffin-tin sphere,

nfCombining Eq. (2), (4) and (5) leads to an exact implicit max
2nrps 2nPoisson equation [3] (IPE). ]r (r) 5 O C (11)S Drcn50

2T1
with the number of terms ensuring sufficient smoothness of]Dr(r) 5 V O r (r) 1 Dr(r)KXC RS S D4p R polynomial. We want r (r) as smooth as possible. There-ps

fore, following lines similar to Rappe et al., we insist that2O V (r (r)) (6)KXC R D
R the Fourier coefficients above a certain cut off wave vector

G should be as small as possible. Thus, we minimizecAssuming a Taylor series expansion of V (r(r)) by r(r)KXC
(1)

`exists, one obtains the first order solution, Dr (r), of Eq.
4 ps 2(6). I 5E G r (G) dG (12)

Gc2T1(1) ]Dr (r) 5 V O r (r) 2O V (r (r)) 2nKXC R KXC RF S D G4p for C whereR R

`(7)
ps 2

r (G) 5E r r (r)J (r) dr (13)ps 0This implies that the redistribution of charge density is
0large when the difference between the kinetic-exchange-

correlation potentials is large. and J (r) is the spherical Bessel function of order 0. The0

In real system calculations, one can start from the r (r) minimization should be performed subject to the followingR

calculated by solving the KS equation. The Janak theorem continuity and multipole-moment-conservation require-
[4] gives, ments:

(n)(n) psr (r) Z r (r ) 5 r (r )R R c c]] ]]V (r (r)) 5 ´ 2E dr9 2 (8)KXC R max ur 2 r9u ur 2 Ru r rc c

2 ps 2where ´ is the eigenvalue of the highest occupied state. E r(r)r dr 5E r (r)r dr (14)max

Combining Eq. (7) with (8). we get another expression 0 0

for charge redistribution.
(n 5 0, 1, 2, . . . nc )max

2T1(1) ]Dr (r) 5 m(r(r)) where (n) indicates nth radial derivatives.4p
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Table 1
Total charge in muffin-tin sphere

FLAPW IPE

c-axis (a.u.) Sn O Sn O

4.0 46.26 8.51 46.44 8.37
4.5 46.07 8.27 46.13 7.92
5.0 45.94 8.08 45.95 7.76
5.5 45.86 7.94 45.90 7.72
6.0 45.80 7.83 45.79 7.60
6.5 45.77 7.74 45.73 7.54
7.0 45.76 7.65 45.71 7.52

with that of real charge density in Fig. 1. Fig. 2 shows how
the Fourier coefficients of the pseudo charge density

2behave as a function of G when optimally generatedFig. 1. Comparison of charge density in real space. The solid curve
according to the above method. It is clear that therepresents the original charge and the dashed curve pseudo charge.
reciprocal-space representation is suitable for plane wave
expansion of charge density. In the charge transfer calcula-
tion, the cutoff energy for charge density expansion is 200

3. Results and discussion Ry.
In Table 1, the variation of total charge in each muffin-

The applicability of IPE with the Thomas–Fermi kinetic tin sphere is given as a function of the c-axis length. Full
energy functional is studied by calculating the charge Potential Linear Augmented Plane Wave (FLAPW) meth-
transfer in a muffin-tin sphere as a function of lattice od (WIEN package) [6] is used to calculate the results. The
constant. This numerical test is performed in S O crystal: total charge of Sn and O are found to decrease withn 2

the space group symmetry is P4 /mnm and the stable increasing c-axis length, respectively, i.e., the charge is2

length of the a and b axis, 8.954 a.u. and that of the c-axis, shifted to the interstitial region. We can see a similar
6.024 a.u. Both of the muffin-tin radii of Sn and O are set tendency of charge transfer in the calculation results of IPE
to be 1.81 a.u which is slightly smaller than the touching with the TF kinetic energy functional. In Table 2 the
sphere of Sn and O of S O whose c-axis is deformed to components of charge transfer are shown. The chargen 2

be 4.0 a.u. transfer is classified into two components. The first is the
In the calculation of pseudo charge density, we use tail effects of the atomic charge density excluding the self

G 50.0 (see Eq. (12)), nf 57 (see Eq. (11)), and nc atom, i.e., QT 5 o r(r 2 R) which is tabulated in thec max max R±0

(see Eq. (14)) for both Sn and O. The real space repre- second and fourth column in Table 2. The second is the
sentation of the pseudo charge density of Sn is compared quantum effects, defined in Eq. (10) and given in the third

and fifth column in Table 2. The total charge transfer from
an isolated atom in the muffin-tin sphere can, therefore, be
obtained by summing QT and QQ. In the analysis of
charge transfer, the overestimate of charge transfer of QT
is corrected by QQ in Sn and the underestimate is

Table 2
Components of charge transfer by IPE

Sn O

c-axis (a.u.) QT QQ QT QQ

4.0 0.778 20.192 1.008 0.442
4.5 0.528 20.249 0.776 0.225
5.0 0.367 20.267 0.609 0.228
5.5 0.263 20.216 0.492 0.310
6.0 0.193 20.256 0.403 0.278
6.5 0.147 20.273 0.338 0.282
7.0 0.118 20.260 0.290 0.307

QT : tail effect.
2 RFig. 2. Fourier transforms of pseudo charge density: y axis is G r (G). QQ: quantum effect.
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corrected in O. Thus, the solution of first order IPE with TF kinetic energy functional corrected the overestimate
TF functional can predict a correct direction of charge (underestimate) of charge transfer for Sn(O).
transfer in a real crystal system.
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